M1. (a) 1.2

> allow 1 mark for conversion of 2.4 kN to 2400 N or for correct transformation without conversion ie $d=2880 \div 2.4$
metre(s)/m
(b) any two from:

- as the load increases the (total) clockwise moment increases
- danger is that the fork lift truck / the load will topple / tip forward
- (this will happen) when the total clockwise moment is equal to (or greater than) the anticlockwise moment
accept moments will not be balanced
- (load above 10.0 kN) moves line of action (from C of M) outside base (area)

M2. (a) (i) will not fall over (1)
accept will not easily fall over (2)
orcentre of mass will remain above the base (1)
(line of action of the) weight will remain above within the base
accept centre of gravity / cof g/c of m/cm
if the monitor is given a small push (1)
depends on mark above
(ii) (total) clockwise moment = (total) anticlockwise moment or they are equal / balanced
(b) the position of the centre of mass has changed (1)the line of action of the weight is outside the base (1)producing a (resultant) moment (1)
points may be expressed in any order

M3. (a) (line of action of) its weight
falls inside its wheel base
accept 'falls between the wheels'
the first two points may be credited by adding a vertical line from the centre of the X on the diagram (1) and labelling it weight / force / with a downwards arrow (1) provided there is no contradiction between what is added to the diagram and anything which may be written
(so there is) no (resultant / clockwise) moment / turning effect
(b) centre of mass should be lower
accept '... centre of gravity' accept 'weight / mass low down' not just 'lower the roof'
wheel base should be wider accept 'long axle(s)' for 'wide wheel base' allow bigger / larger wheel base do not credit 'long wheel base' responses in either order

M4. (a) (i) centre of \mathbf{X} directly below \mathbf{P} and between the model aeroplanes as judged by eye but between centre of propeller of top aeroplane and canopy of bottom aeroplane example

(ii) the centre of mass is (vertically) below the point of suspension / P
the centre of mass is in the middle of the aeroplanes accept the centre of mass is level with the aeroplanes
(b) centre of mass of the worker and the ladder (and device)
line of action of the weight is inside the base
accept the centre of mass is above / within / inside the base (of the ladder and device)
so there will not be a (resultant) moment
accept so he / it / the ladder will not topple even if he leans over
or it will (only) topple over if the line of action of the weight / the centre of mass is outside the base
accept each point, either on the diagram or in the written
explanation, but do not accept the point if there is any contradiction between them

M5. (a) the point at which the (total) mass seems to act / appears to be concentrated accept 'weight' for 'mass' accept the point at which gravity seems to act do not accept a definitive statement eg where (all) the mass is
(b) wider / larger base
marks are for a correct comparison
lower centre of mass
accept lower centre of gravity / c of g
(c) line of action (of the weight) lies / falls inside the base in each case the underlined term must be used correctly to gain the mark
the resultant moment returns mixer to its original position
$\begin{aligned} & \text { accept there is no resultant moment / resultant moment is } \\ & \text { zero } \\ & \text { accept resulting moment for resultant moment } \\ & \text { do not accept converse argument }\end{aligned}$ 1

